DNA-binding properties of ARID family proteins
نویسندگان
چکیده
The ARID (A-T Rich Interaction Domain) is a helix-turn-helix motif-based DNA-binding domain, conserved in all eukaryotes and diagnostic of a family that includes 15 distinct human proteins with important roles in development, tissue-specific gene expression and proliferation control. The 15 human ARID family proteins can be divided into seven subfamilies based on the degree of sequence identity between individual members. Most ARID family members have not been characterized with respect to their DNA-binding behavior, but it is already apparent that not all ARIDs conform to the pattern of binding AT-rich sequences. To understand better the divergent characteristics of the ARID proteins, we undertook a survey of DNA-binding properties across the entire ARID family. The results indicate that the majority of ARID subfamilies (i.e. five out of seven) bind DNA without obvious sequence preference. DNA-binding affinity also varies somewhat between subfamilies. Site-specific mutagenesis does not support suggestions made from structure analysis that specific amino acids in Loop 2 or Helix 5 are the main determinants of sequence specificity. Most probably, this is determined by multiple interacting differences across the entire ARID structure.
منابع مشابه
The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity.
p270 is an integral member of human SWI-SNF complexes, first identified through its shared antigenic specificity with p300 and CREB binding protein. The deduced amino acid sequence of p270 reported here indicates that it is a member of an evolutionarily conserved family of proteins distinguished by the presence of a DNA binding motif termed ARID (AT-rich interactive domain). The ARID consensus ...
متن کاملStructure and DNA-binding sites of the SWI1 AT-rich interaction domain (ARID) suggest determinants for sequence-specific DNA recognition.
ARID (AT-rich interaction domain) is a homologous family of DNA-binding domains that occur in DNA-binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals, and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) do...
متن کاملCommunication Routes in ARID Domains between Distal Residues in Helix 5 and the DNA-Binding Loops
ARID is a DNA-binding domain involved in several transcriptional regulatory processes, including cell-cycle regulation and embryonic development. ARID domains are also targets of the Human Cancer Protein Interaction Network. Little is known about the molecular mechanisms related to conformational changes in the family of ARID domains. Thus, we have examined their structural dynamics to enrich t...
متن کاملNomenclature of the ARID family of DNA-binding proteins.
The ARID is an ancient DNA-binding domain that is conserved throughout the evolution of higher eukaryotes. The ARID consensus sequence spans about 100 amino acid residues, and structural studies identify the major groove contact site as a modified helix-turn-helix motif. ARID-containing proteins exhibit a range of cellular functions, including participation in chromatin remodeling, and regulati...
متن کاملThe DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes.
SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that are highly conserved from yeast to human. From yeast to human the complexes contain a subunit with an ARID (A-T-rich interaction domain) DNA-binding domain. In yeast this subunit is SWI1 and in human there are two closely related alternative subunits, p270 and ARID1B. We describe here a comparison of the DNA-binding propert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005